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Currently used logic devices are based on monolithic semicon- 151
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Computers are based on binary logic. All the information is g’ 0]

encoded in series of zeros and ones. Logic gates are basic element N4

processing information; they function as switches whose output (0 - -1.5 r . : . :
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or 1) depends on input conditions. There is a multitude of chemical potential vs. Ag/AgC! wavelength / nm
systems capable of performing S'm'.lar type of operations. Most of Figure 1. Cyclic voltammograms of [Fe(CM)~ modified titanium dioxide
these systems are based on solutions containing switching mol-photoelectrode upon pulsed irradiation with LEDs (left) and photocurrent
ecules. Information to be processed is supplied as variation of action spectra of this electrode recorded under potentiostatic conditions
concentration of various chemicals, while the output is read as (9nt)-

fluorescence or absorbance of the solution. This approach makessemiconductor particles, and generation of cathodic photocurrent
the integration of chemical logic devices with currently used s gpserved within the whole absorption spectrum of the material
electronic equipment extremely difficult, the same concerns more (Figure 1).
advanced processing involving various logic gates connected into  photocurrent generated at described photoelectrodes can be
more complex systems. Moreover, some logic gates, such as XOR syjitched from anodic to cathodic (or opposite) by applying various
are very difficult to implement in chemical systems. In most cases, potentials (Figure 1, left) or various photon energies (Figure 1, right,
the XOR operation is based on annihilation of two chemical inputs, cyrve recorded at 250 mV). Due to these two main factors affecting
such as acid and base or metal ion and chelating &géitis the net photocurrent effect, we have proposed to name this
approach does not allow more advanced information processing.phenomenon asPhotcElectrochemical Photocurrent Switching
This communication describes the first example of a chemical (PEPS effectit
optoelectronic XOR gate operated exclusively by optical inputs and  Competition between cathodic and anodic photocurrents can be
electric output. Furthermore, the system can be programmed toapplied to mimic the XOR logic gate. This gate yields high output
various modes of operation by simple control of the photoelectrode value (logical 1) when input values are different (i.e., 0 and 1).
potential. Two identical input values (0, 0 or 1, 1) yield zero as an output.
Surface-modified nanocrystalline semiconductors also serve as |n construction of an optical logic system based on nanocrys-
very powerful and diverse switching devicésSeveral logic talline TiO, photoelectrodes modified with cyanoferrates, elec-
systems, including AND, OR, and INHIBIT gates, based on troluminescent diodes were used as light sources. Diodes were
photoelectrodes made of cyanoferrate modifiedzTiBe lightand  powered by a pulse generator allowing for quasi-monochromatic
potential signals as input data and yield information encoded in (400 or 460 nm) or quasi-bichromatic (400 and 460 nm) pulsed
current pulse$! These features make this system much more suited jrradiation (Figure 2).
to cooperate with existing silicon-based devices. To analyze the system in term of Boolean logic, it is necessary
Titanium dioxide is easily modified with [F¢CN)sL]"~ com- to assign logic values to input and output signals. For the sake of
plexes (L= CN~, H0, NH;, thiodiethanol, thiodipropanol). These  simplicity, logical 0 and 1 are assigned to off and on states of the
complexes bind the surface of nanocrystals via formation of LEDs, respectively. Two different wavelengths correspond to two
cyanobridged species, such as L(GR' —C=N—-TiV.11"14 These different inputs of the logic gate. In the same way, one can assign
materials exhibit unique photoelectrochemical properties in air- logic 0 to the state when photocurrent is not generated and logic 1
equilibrated electrolyte solutions. Upon electrochemical oxidation to any nonzero photocurrent intensity irrespectively on its polariza-
of the surface complex, the electrode generates anodic photocurrention (cathodic or anodic).
like neat titanium dioxide. Partial reduction of the surface complex At potentials ensuring complete oxidation of the surface species
results in appearance of an MMCT ({FeTi'V) transition!l-14 (e.g.,+400 mV vs Ag/AgClI), pulsed irradiation with violet diode
Excitation within this band results in generation of cathodic (Amax = 400 nm) results in anodic photocurrent pulses, while
photocurrent due to an electron transfer from the excited surfaceirradiation with blue LED fmax = 460 nm) does not generate any
complex to an electron acceptor in solution (FiguréliAt the photocurrent. Simultaneous irradiation with two LEDs yields the
same time, excitation within the semiconductor absorption band same effect as the violet diode alone (Figure 2, Table 1, output 1).
generates anodic photocurrent. Complete reduction of the surfaceElectrochemical reduction of the surface species is achieved at lower
complex results in formation of an inversion layer within the potentials. Excitation of this material with violet and blue diodes
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wavelength / nm Figure 3. Electronic equivalent circuit for reconfigurable logic system based

. . ) . o on modified titanium dioxide electrode. Output 1 follows the input 1 signal,
Figure 2. Emission spectra of violet and blue LEDs used for illumination output 2 computes the XOR function of input data, while output 3
(left) and photocurrent profiles recorded during pulsed irradiation of corresponds to the logic sum (OR) of input data. Programming input and

[Fe(CN)]*~ modified titanium dioxide photoelectrodes (right). POwer hree nosition switch represent programming of the device through the
density at the electrode surface (measured with Ophir Nova Il radiant power photoelectrode potential.

meter equipped with PD300-UV head) is 1.4 and 2.0 mW &for 400
and 460 nm diode, respectively. Diodes operate at input power of 35 and

38 mW, respectively. The electrode surface is ca. %.cm of this systems can be much more complex if photoelectrode
) . potential is considered as the third input channel. In this context,
Table 1. Truth Table for Logic Gates Based on [Fe(CN)e|" the logic system described here is a chemical model of a

Modified Titanium Dioxide Photoelectrodes. Outputs 1, 2, and 3

Refer to Photoelectrochemical Responses at Given Potentials reconfigurable logic device, the function of which can be pro-

grammed by the uséP:16 Changes in applied potential can switch

input 1 input 2 output 1 output 2 out . . .
;%%”nm 46% o 405 v zsg v —ZOF[J)urtn?/ the.loglc bghawor of the photoele(_:trode bet_ween three different
regimes: (i) transmission of the input 1 signal to the output
8 2 8 2 (1) neglecting input 2 (YES), (ii) computation of the XOR function of
1 0 1 1 1 two input values, and (i) computation of the OR function of two
1 1 1 0 1 input values (Figure 3).
YES XOR OR Reconfigurability (variation of logic device function upon

programming or stimulation) of the chemical logic device is a
unique feature. Numerous chemical systems are capable of mimick-
ing logic functions, but the response of these systems is intrinsically
associated with chemical structure of the switch. Application of a
nanocrystalline semiconductor modified with electrochemically and
photochemically active compounds opens a possibility for further
development of chemical logic systems.

leads to generation of cathodic photocurrent. Simultaneous irradia-
tion by both diodes results in higher intensity of photocurrent. Such
behavior of the photoelectrode at200 mV vs Ag/AgCI corre-
sponds to the OR logic gate (Figure 2, Table 1, output 3).
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